The Pillager 0.7 Release

Posted by Informasi Pekerjaan Thursday, June 11, 2020 0 comments
I spent the last couple days recoding the Pillager, getting rid of bugs, optimizing code, making it more extendable and more solid overall. So this post is to release the new code.  However, with that being said, the Pillager is in mass revision right now and I added some more developers to the team to add a whole host of new database attacking features as well as moving past databases and into other areas of post exploitation pillaging. Soon to be released..  As usual this tool and any tool i create is based on my issues when performing penetration tests and solves those problems.. If you have any insight or comments i will certainly take them into consideration for future releases.

For now check out Version 0.7.. Named searches and Data searches via external config files are now functioning properly as well as other bugs fixed along the way... Drop this in a BT5 VM and make sure you have your DB python stuff installed per the help docs and you should be good to go.  If you are looking to use oracle you are going to have to install all the oracle nonsense from oracle or use a BT4r2 vm which has most of the needed drivers minus cxoracle which will need to be installed.

http://consolecowboys.org/pillager/pillage_0.7.zip



Ficti0n$ python pillager.py
 
[---] The Database Pillager (DBPillage) [---]
[---] CcLabs Release [---]
[---] Authors: Ficti0n, [---]
[---] Contributors: Steponequit [---]
[---] Version: 0.7 [---]
[---] Find Me On Twitter: ficti0n [---]
[---] Homepage: http://console-cowboys.blogspot.com [---]

Release Notes:
 --Fixed bugs and optimized code
 --Added Docstrings
 --Fixed Named and Data searches from config files                 

About:
The Database Pillager is a multiplatform database tool for searching and browsing common
database platforms encountered while penetration testing. DBPillage can be used to search
for PCI/HIPAA data automatically or use DBPillage to browse databases,display data.
and search for specified tables/data instances.
DBpillage was designed as a post exploitation pillaging tool with a goal of targeted
extraction of data without the use of database platform specific GUI based tools that
are difficult to use and make my job harder.

Supported Platforms:
        --------------------
-Oracle
-MSSQL
-MYSQL
        -PostGreSQL
     

        Usage Examples:
        ************************************************************************
        
        For Mysql Postgres and MsSQL pillaging:
        ---------------------------------------
        python dbPillage -a [address] -d [dbType] -u [username] -p [password]
        
        
        For Oracle pillaging you need a SID connection string:
        ------------------------------------------------------
        python dbPillage-a [address]/[sid] -d [dbType] -u [username] -p [password]
        

        Grab some hashes and Hipaa specific:(Default is PCI)
        ------------------------------------
        python dbPillage -a [address] -d [dbType] -u [username] -p [password] --hashes -s hipaa


Drop into a SQL CMDShell:
-------------------------
        python dbpillage.py -a [address] -d [dbType] -u [username] -p [password] -q

Config file specified searches:
-------------------------------
Search for data Items from inputFiles/data.txt:
        python dbpillage.py -a [address] -d [dbType] -u [username] -p [password] -D

Search for specific table names from inputFiles/tables.txt:
python dbpillage.py -a [address] -d [dbType] -u [username] -p [password] -N

     
     
        Switch Options:
        ---------------------
        -# --hashes = grab database password hashes
        -l --limit  = limit the amount of rows that are searched or when displaying data (options = any number)
        -s --searchType = Type of data search you want to perform (options:pci, hipaa, all)(PCI default)
        -u --user = Database servers username
        -p --pass = Password for the database server
        -a --address = Ipaddress of the database server
        -d --database = The database type you are pillageing (options: mssql,mysql,oracle,postgres)
        -r --report = report format (HTML, XML, screen(default))
        -N --nameSearch = Search via inputFiles/tables.txt
        -D --dataSearch = Targeted data searches per inputFiles/data.txt
-q --queryShell = Drop into a SQL CMDshell in mysql or mssql
     
     
        Prerequisites:
        -------------
        python v2  (Tested on Python 2.5.2 BT4 R2 and BT5 R3 - Oracle stuff on BT4r2 only unless you install the drivers from oracle)
        cx_oracle (cx-oracle.sourceforge.net)
        psycopg2  (initd.org/psycopg/download/)
        MySQLdb   (should be on BT by default)
        pymssql   (should be on BT by default)
     

Read more
  1. Pentest Ftp
  2. Pentest With Kali Linux
  3. Pentest Lab Setup
  4. Pentest Os
  5. Pentest Practice Sites
  6. Hacker News
  7. Pentest News
  8. Hacker On Computer
  9. Pentest Jobs
  10. Hacking The System
  11. Hacking With Python
  12. Pentest Questions
  13. Pentest Documentation
  14. Hacking Linux
  15. Pentest Reporting Tool
  16. Pentest Usb
  17. Pentest Active Directory
  18. Hackerrank Sql
  19. Hacking Tutorials
  20. Hacking Youtube

Change Passwords Regularly - A Myth And A Lie, Don'T Be Fooled, Part 1

Posted by Informasi Pekerjaan 0 comments

TL;DR: different passwords have different protection requirements, and different attackers using various attacks can only be prevented through different prevention methods. Password security is not simple. For real advise, checking the second post (in progress).

Are you sick of password advices like "change your password regularly" or "if your password is password change it to pa$$w0rd"? This post is for you!

The news sites are full of password advises nowadays due to recent breaches. When I read/watch these advise (especially on CNN), I am usually pissed off for a lot of reasons. Some advises are terrible (a good collection is here), some are good but without solutions, and others are better, but they don't explain the reasons. Following is my analysis of the problem. It works for me. It might not work for you. Comments are welcome!

Password history

Passwords have been used since ancient times.


Because it is simple. When I started using the Internet, I believe I had three passwords. Windows login, webmail, and IRC. Now I have ~250 accounts/passwords to different things, like to my smartphone, to my cable company (this password can be used to change the channels on the TV), to my online secure cloud storage, to full disk encryption to start my computer, to my nude pictures, to my WiFi router, to my cloud server hosting provider, etc etc etc. My money is protected with passwords, my communication is protected with passwords/encryption, my work is protected with passwords. It is pretty damn important. But yet people tend to choose lame passwords. Pretty lame ones. Because they don't think it can be significant. But what is not essential today will be relevant tomorrow. The service you used to download music (iTunes) with the lame password will one day protect all your Apple devices, where attackers can download your backup files, erase all your devices, etc. The seven-character and one capital rule is not enough anymore. This advice is like PDF is safe to open, Java is secure. Old, outdated, untrue.

Now, after this lengthy prologue, we will deep dive into the analysis of the problem, by checking what we want to protect, against whom (who is the attacker), and only after that, we can analyze the solutions. Travel with me, I promise it will be fun! ;)

What to protect?

There are different services online, and various services need different ways to protect. You don't use the same lock on your Trabant as you do on your BMW.

Internet banking, online money

For me, this is the most vital service to protect. Luckily, most of the internet banking services use two-factor authentication (2FA), but unfortunately, not all of them offer transaction authorization/verification with complete transactions. 2FA is not effective against malware, it just complicates the attack. Transaction authorization/verification is better, but not perfect (see Zitmo). If the access is not protected with 2FA, better choose the best password you have (long, real random, sophisticated, but we will get to this later). If it is protected with 2FA, it is still no reason not to use the best password ;) This is what I call the "very high-level password" class.


Credit card data

This system is pretty fucked up bad. Something has to be secret (your credit card number), but in the meantime that is the only thing to identify your credit card. It is like your username is your password. Pretty bad idea, huh? The problem is even worse with a lot of different transaction types, especially when the hotel asks you to fax both sides of your CC to them. Unfortunately, you can't change the password on your credit card, as there is no such thing, but Verified by VISA or 3-D Secure with 2FA might increase the chances your credit card won't get hacked. And on a side note, I have removed the CVV numbers from my credit/debit cards. I only read it once from the card when I received it, I don't need it anymore to be printed there.
And sometimes, you are your own worst enemy. Don't do stupid things like this:


Work related passwords (e.g. Windows domain)

This is very important, but because the attack methods are a bit different, I created this as a different category. Details later.

Email, social sites (Gmail/Facebook/Twitter), cloud storage, online shopping

This is what I call the "high level password" class.
Still, pretty important passwords. Some people don't understand "why would attackers put any energy to get his Facebook account?" It is simple. For money. They can use your account to spread spam all over your Facebook wall. They can write messages to all of your connections and tell them you are in trouble and send money via Western Union or Bitcoin.


They can use your account in Facebook votes. Your e-mail, cloud storage is again very important. 20 years ago you also had letters you didn't want to print and put in front of the nearest store, neither want you to do that with your private photo album. On a side note, it is best to use a cloud storage where even the cloud provider admin can't access your data. But in this case, with no password recovery option, better think about "alternative" password recovery mechanisms.

Other important stuff with personal data (e.g. your name, home address)

The "medium level password" class. This is a personal preference to have this class or not, but in the long run, I believe it is not a waste of energy to protect these accounts. These sites include your favorite pizza delivery service, your local PC store, etc.

Not important stuff

This is the category other. I usually use one-time disposable e-mail to these services. Used for the registration, get what I want, drop the email account. Because I don't want to spread my e-mail address all over the internet, whenever one of these sites get hacked. But still, I prefer to use different, random passwords on these sites, although this is the "low level password" class.

Attackers and attack methods

After categorizing the different passwords to be protected, let's look at the different attackers and attack methods. They can/will/or actively doing it now:

Attacking the clear text password 

This is the most effective way of getting the password. Bad news is that if there is no other factor of protection, the victim is definitely not on the winning side. The different attack methods are:

  • phishing sites/applications,


  • social engineering,
  • malware running on the computer (or in the browser), 
  • shoulder surfing (check out for smartphones, hidden cameras), 
  • sniffing clear-text passwords when the website is not protected with SSL,
  • SSL MiTM,
  • rogue website administrator/hacker logging clear text passwords,
  • password reuse - if the attacker can get your password in any way, and you reuse it somewhere else, that is a problem,
  • you told your password to someone and he/she will misuse it later,
  • hardware keyloggers,
  • etc.

The key thing here is that no matter how long your passwords are, no matter how complex it is, no matter how often do you change it (except when you do this every minute ... ), if it is stolen, you are screwed. 2FA might save you, or might not.

Attacking the encrypted password 

This is the usual "hack the webserver (via SQL injection), dump the passwords (with SQLMap), post hashes on pastebin, everybody starts the GPU farm to crack the hashes" scenario. This is basically the only scenario where the password policies makes sense. In this case the different level of passwords need different protection levels. In some cases, this attack turns out to be the same as the previous attack, when the passwords are not hashed, or are just encoded.

The current hash cracking speeds for hashes without any iterations (this is unfortunately very common) renders passwords like Q@tCB3nx (8 character, upper-lowercase, digit, special characters) useless, as those can be cracked in hours. Don't believe me? Let's do the math.

Let's say your password is truly random, and randomly choosen from the 26 upper, 26 lower, 10 digit, 33 special characters. (Once I tried special passwords with high ANSI characters inside. It is a terrible idea. Believe me.). There are 6 634 204 312 890 620 different, 8 character passwords from these characters. Assuming a 2 years-old password cracking rig, and MD5 hash cracking with 180 G/s speed, it takes a worst case 10 hours (average 5) to crack the password, including upgrading your bash to the latest, but still vulnerable bash version. Had the password been 10 characters long, it would take 10 years to crack with today hardware. But if the password is not truly random, it can be cracked a lot sooner.

A lot of common hashing algorithms don't use protections against offline brute-force attacks. This includes LM (old Windows hashes), NTLM (modern Windows hashes), MD-5, SHA1-2-512. These hashing algorithms were not developed for password hashing. They don't have salting, iterations, etc. out of the box. In the case of LM, the problem is even worse, as it converts the lowercase characters to uppercase ones, thus radically decreasing the key space. Out of the box, these hashes are made for fast calculation, thus support fast brute-force.


Another attack is when the protected thing is not an online service, but rather an encrypted file or crypto-currency wallet.

Attacking the authentication system online

This is what happened in the recent iCloud hack (besides phishing). Attackers were attacking the authentication system, by either brute-forcing the password, or bypassing the password security by answering the security question. Good passwords can not be brute-forced, as it takes ages. Good security answers have nothing to do with the question in first place. A good security answer is as hard to guess as the password itself. If password recovery requires manual phone calls, I know, it is a bit awkward to say that your first dog name was Xjg.2m`4cJw:V2= , but on the other hand, no one will guess that!


Attacking single sign on

This type of attack is a bit different, as I was not able to put the "pass the hash" attacks anywhere. Pass the hash attack is usually found in Windows domain environments, but others might be affected as well. The key thing is single sign on. If you can login to one system (e.g. your workstation), and access many different network resources (file share, printer, web proxy, e-mail, etc.) without providing any password, then something (a secret) has to be in the memory which can be used to to authenticate to the services. If an attacker can access this secret, he will be able to access all these services. The key thing is (again) it does not matter, how complex your passwords are, how long it is, how often do you change, as someone can easily misuse that secret.

 

Attacking 2FA

As already stated, 2 factor authentication raises the efforts from an attacker point of view, but does not provide 100% protection. 
  • one time tokens (SecurID, Yubikey) can be relayed in a man-in-the-middle attack
  • smartcard authentication can be relayed with the help of a malware to the attacker machine - or simply circumvented in the browser malware, 
  • text based (SMS) messages can be stolen by malware on the smartphone or rerouted via SS7, 
  • bio-metric protection is constantly bypassed,
  • SSH keys are constantly stolen,
  • but U2F keys are pretty good actually, even though BGP/DNS hijack or similar MiTM can still circumvent that protection,
  • etc. 


Others

Beware that there are tons of other attack methods to access your online account (like XSS/CSRF), but all of these have to be handled on the webserver side. The best you can do is to choose a website where the Bug Bounty program is running 24/7. Otherwise, the website may be full of low hanging, easy-to-hack bugs.

Now that we have covered what we want to protect against what, in the next blog post, you will see how to do that. Stay tuned. I will also explain the title of this blog post.

Continue reading


Trendnet Cameras - I Always Feel Like Somebody'S Watching Me.

Posted by Informasi Pekerjaan 0 comments
Firstly this post requires the following song to be playing.

Now that we got that out of the way... I have been seeing posts on sites with people having fun with embedded systems/devices and I was feeling left out. I didn't really want to go out and buy a device so I looked at what was laying around. 

To start off the latest firmware for this device can be found at the following location :

First order of business was to update the camera with the most recent firmware:
Device info page confirming firmware version
Now that the device was using the same version of firmware as I was going to dive into, lets get to work. I will be using binwalk to fingerprint file headers that exist inside the firmware file. Binwalk can be downloaded from the following url: http://code.google.com/p/binwalk/

Running binwalk against the firmware file 
binwalk FW_TV-IP110W_1.1.0-104_20110325_r1006.pck 
DECIMAL   HEX       DESCRIPTION
-------------------------------------------------------------------------------------------------------
32320     0x7E40     gzip compressed data, from Unix, last modified: Thu Mar 24 22:59:08 2011, max compression
679136     0xA5CE0   gzip compressed data, was "rootfs", from Unix, last modified: Thu Mar 24 22:59:09 2011, max compression
Looks like there are two gzip files in the "pck" file. Lets carve them out using 'dd'. First cut the head off the file and save it off as '1_unk'
#dd if=FW_TV-IP110W_1.1.0-104_20110325_r1006.pck of=1_unk bs=1 count=32320
32320+0 records in
32320+0 records out
32320 bytes (32 kB) copied, 0.167867 s, 193 kB/s
Next cut out the first gzip file that was identified, we will call this file '2'
#dd if=FW_TV-IP110W_1.1.0-104_20110325_r1006.pck of=2 bs=1 skip=32320 count=646816
646816+0 records in
646816+0 records out
646816 bytes (647 kB) copied, 2.87656 s, 225 kB/s
Finally cut the last part of the file out that was identified as being a gzip file, call this file '3'
#dd if=FW_TV-IP110W_1.1.0-104_20110325_r1006.pck of=3 bs=1 skip=679136
2008256+0 records in
2008256+0 records out
2008256 bytes (2.0 MB) copied, 8.84203 s, 227 kB/s
For this post I am going to ignore files '1_unk' and '2' and just concentrate on file '3' as it contains an interesting bug :) Make a copy of the file '3' and extract it using gunzip
#file 3
3: gzip compressed data, was "rootfs", from Unix, last modified: Thu Mar 24 22:59:09 2011, max compression
#cp 3 3z.gz
#gunzip 3z.gz
gzip: 3z.gz: decompression OK, trailing garbage ignored
#file 3z
3z: Minix filesystem, 30 char names
As we can see the file '3' was a compressed Minix file system. Lets mount it and take a look around.
#mkdir cameraFS
#sudo mount -o loop -t minix 3z cameraFS/
#cd cameraFS/
#ls
bin  dev  etc  lib  linuxrc  mnt  proc  sbin  server  tmp  usr  var
There is all sorts of interesting stuff in the "/server" directory but we are going to zero in on a specific directory "/server/cgi-bin/anony/"
#cd server/cgi-bin/anony/
#ls
jpgview.htm  mjpeg.cgi  mjpg.cgi  view2.cgi
The "cgi-bin" directory is mapped to the root directory of http server of the camera, knowing this we can make a request to http://192.168.1.17/anony/mjpg.cgi and surprisingly we get a live stream from the camera. 

video stream. giving no fucks.


Now at first I am thinking, well the directory is named "anony" that means anonymous so this must be something that is enabled in the settings that we can disable.... Looking at the configuration screen you can see where users can be configured to access the camera. The following screen shows the users I have configured (user, guest)
Users configured with passwords.

Still after setting up users with passwords the camera is more than happy to let me view its video stream by making our previous request. There does not appear to be a way to disable access to the video stream, I can't really believe this is something that is intended by the manufacturer. Lets see who is out there :)

Because the web server requires authentication to access it (normally) we can use this information to fingerprint the camera easily. We can use the realm of 'netcam' to conduct our searches 
HTTP Auth with 'netcam' realm
Hopping on over to Shodan (http://www.shodanhq.com) we can search for 'netcam' and see if there is anyone out there for us to watch
9,500 results
If we check a few we can see this is limited to only those results with the realm of 'netcam' and not 'Netcam'
creepy hole in the wall

front doors to some business
Doing this manually is boring and tedious, wouldn't it be great if we could automagically walk through all 9,500 results and log the 'good' hosts.... http://consolecowboys.org/scripts/camscan.py

This python script requires the shodan api libs http://docs.shodanhq.com/ and an API key. It will crawl the shodan results and check if the device is vulnerable and log it. The only caveat here is that the shodan api.py file needs to be edited to allow for including result page offsets. I have highlighted the required changes below.
    def search(self, query,page=1):
        """Search the SHODAN database.
     
        Arguments:
        query    -- search query; identical syntax to the website
        page     -- page number of results      

        Returns:
        A dictionary with 3 main items: matches, countries and total.
        Visit the website for more detailed information.
     
        """
        return self._request('search', {'q': query,'page':page})

Last I ran this there was something like 350 vulnerable devices that were available via shodan. Enjoy.

Update: We are in no way associated with the @TRENDnetExposed twitter account.
Related news

Reversing C++ String And QString

Posted by Informasi Pekerjaan 0 comments
After the rust string overview of its internal substructures, let's see if c++ QString storage is more light, but first we'r going to take a look to the c++ standard string object:



At first sight we can see the allocation and deallocation created by the clang++ compiler, and the DAT_00400d34 is the string.

If we use same algorithm than the rust code but in c++:



We have a different decompilation layout. Note that the Ghidra scans very fast the c++ binaries, and with rust binaries gets crazy for a while.
Locating main is also very simple in a c++ compiled binary, indeed is more  low-level than rust.


The byte array is initialized with a simply move instruction:
        00400c4b 48 b8 68        MOV        RAX,0x6f77206f6c6c6568

And basic_string generates the string, in the case of rust this was carazy endless set of calls, detected by ghidra as a runtime, but nevertheless the basic_string is an external imported function not included on the binary.

(gdb) x/x 0x7fffffffe1d0
0x7fffffffe1d0: 0xffffe1e0            low str ptr
0x7fffffffe1d4: 0x00007fff           hight str ptr
0x7fffffffe1d8: 0x0000000b        sz
0x7fffffffe1dc: 0x00000000
0x7fffffffe1e0: 0x6c6c6568         "hello world"
0x7fffffffe1e4: 0x6f77206f
0x7fffffffe1e8: 0x00646c72
0x7fffffffe1ec: 0x00000000        null terminated
(gdb) x/s 0x7fffffffe1e0
0x7fffffffe1e0: "hello world"

The string is on the stack, and it's very curious to see what happens if there are two followed strings like these:

  auto s = string(cstr);
  string s2 = "test";

Clang puts toguether both stack strings:
[ptr1][sz1][string1][null][string2][null][ptr2][sz2]

C++ QString datatype

Let's see the great and featured QString object defined on qstring.cpp and qstring.h

Some QString methods use the QCharRef class whose definition is below:

class Q_EXPORT QCharRef {
friend class QString;
QString& s;
uint p;
Searching for the properties on the QString class I've realized that one improvement that  rust and golang does is the separation from properties and methods, so in the large QString class the methods are  hidden among the hundreds of methods, but basically the storage is a QStringData *;

After removing the methods of QStringData class definition we have this:

struct Q_EXPORT QStringData : public QShared {
    QChar *unicode;
    char *ascii;
#ifdef Q_OS_MAC9
    uint len;
#else
    uint len : 30;

vivanews.com

nines cantik